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1 Overview

With the advent of the LHC, particle physics has entered a new exciting era. Within

a few years of data accumulation, the LHC should be able to test and constrain many

types of new physics beyond the SM. In particular, the discovery reach for extra neutral

gauge bosons is exceptional. Searches for a high invariant dilepton mass peak in about

100 fb−1 of accumulated data will find or exclude Z ′ bosons up to about 5 TeV, and a

luminosity upgraded LHC (by roughly a factor of 10) can extend the reach by another

TeV [1]. After a potential discovery, the LHC will have some diagnostic means to narrow

down the underlying Z ′ model [2] by studying, for example, leptonic forward-backward

asymmetries (for reviews, see refs. [3]–[5]) and heavy quark final states [6, 7]. Furthermore,

angular distributions of Drell-Yan leptons may help to discriminate a Z ′ against spin-

0 (sneutrino) and spin-2 (Kaluza-Klein graviton) resonances [8]. However, the hadronic

LHC environment will make it difficult to specify the Z ′ properties completely or with

satisfactory precision. Electroweak precision measurements will therefore play an important

complementary rôle in this context. Already these data give rise to strong constraints on

possible Z ′ and in many cases yield the best limits. In this paper we will revisit the EW

precision data in the presence of Z ′ bosons. This is motivated by much higher precision in

several measurements (such as from the Tevatron) compared to previous studies [9, 10] and

also by significant shifts and new measurements at low energies, a sector with increasing

impact on global analyses of this type.

Neutral gauge sectors with an additional U(1) symmetry in addition to the SM hyper-

charge U(1)Y and an associated Z ′ gauge boson are among the best motivated extensions

of the SM. They are predicted in most Grand Unified Theories (GUTs) and appear co-

piously in superstring theories. An especially compelling motivation for extended gauge

theories came from the development of GUTs larger than the original SU(5) model, such

as SO(10) or E6, which allow the SM gauge group to be embedded into them [11]. There is

an extensive range of models with an extra U(1) symmetry (for a review, see [5] and refer-

ences therein). Among these, models based on the E6 GUT group and left-right symmetry
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groups have been extensively pursued in the literature and are particularly significant from

the point of view of LHC phenomenology. In the context of supersymmetry, this class of

models also arises [12] from requiring the extra U(1) symmetry to provide a solution to the

µ-problem [13], to forbid rapid (dimension 4) proton decay, to protect all fields by chirality

and supersymmetry from acquiring high scale masses, and to be consistent with anomaly

cancellation, gauge coupling unification and family universality (to avoid the strong con-

straints from the flavor-changing neutral current (FCNC) sector [14]). The models studied

here include:

E6 based models: extra U(1) gauge symmetries appear in the decomposition of the

SO(10) [15] or E6 [16, 17] GUT groups. E6 contains the maximal subgroup SO(10)×
U(1)ψ , and SO(10) can be further decomposed into its SU(5) × U(1)χ maximal sub-

group. We are considering models in which the linear combination,

U(1)′ = cos β U(1)χ + sin β U(1)ψ , (1.1)

survives down to the EW scale, using a convention in which the mixing angle in

eq. (1.1) satisfies1 −90◦ < β ≤ 90◦. The full E6 symmetry would impose strong con-

straints on these models, which are often unrealistic. For the purpose of our analyses,

we are, however, mostly interested in the effects, phenomenology, and constraints as-

sociated directly with the Z ′ bosons and not in other aspects of these models2.

Zχ: β = 0◦ =⇒ Z ′ = Zχ, which is also the unique solution to the conditions of (i)

family universality, (ii) no extra matter other than right handed neutrino, (iii)

absence of gauge and mixed gauge/gravitational anomalies and (iv) orthogonal-

ity to the hypercharge generator.

Zψ: β = 90◦ =⇒ Z ′ = Zψ, possessing only axial vector couplings to ordinary

fermions. As discussed in section 4, it is among the least constrained by the

precision data.

Zη: β = − arctan
√

5/3 ≈ −52.2◦ =⇒ Z ′ =
√

3/8 Zχ −
√

5/8 Zψ ≡ Zη, occuring

in Calabi-Yau compactifications [19] of the heterotic string [20] if E6 breaks

directly to a rank 5 subgroup [21] via the Hosotani mechanism [22].

ZI : β = arctan
√

3/5 ≈ 37.8◦ =⇒ Z ′ =
√

5/8 Zχ +
√

3/8 Zψ ≡ −ZI , which is

orthogonal to the Zη. This boson [16] has the defining property of vanishing

couplings to up-type quarks. Its production is thus suppressed at hadron collid-

ers, especially at the Tevatron since in high-energy pp̄ collisions Z ′ production

through down quarks is suppressed by a factor of 25 relative to up quarks [3].

ZS : a supersymmetric model with a secluded U(1)′ breaking sector and a large su-

persymmetry breaking A-term was introduced (i) to provide an approximately

1Note, that by restricting β to a semi-circle makes the sign of the mixing angle θZZ′ physically meaningful.
2There are classes of Z′ models closely related to the E6 ones motivated by minimal gauge unification [5,

12] which generically require more than one kind of U(1)′ breaking singlet field. The issue of obtaining a

suitable symmetry breaking pattern is discussed in [18].
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flat potential allowing the generation of a Z–Z ′ mass hierarchy [23] and (ii) to

produce a strong first order EW phase transition for EW baryogenesis [24]. Such

a sector is obtained if the right-handed ν has −2× the U(1)′ charge of the other

SM singlet in a 27 representation of E6, giving β = arctan
√

5/27 ≈ 23.3◦ =⇒
Z ′ =

√

27/32 Zχ +
√

5/32 Zψ ≡ ZS , which is numerically close to the ZI .

ZN : β = arctan
√

15 ≈ 75.5◦ =⇒ Z ′ = (Zχ +
√

15 Zψ)/4 ≡ ZN , which is a conse-

quence of choosing the right-handed neutrinos to have zero U(1)′ charges so that

they can acquire very heavy Majorana masses [25]–[27] and are thus suitable to

take part in the standard seesaw mechanism [28] with three naturally light neu-

trinos. The ZN boson also appears in a model referred to as the ESSM [29] or

the E6SSM [30].

ZR: all models discussed so far assume negligible kinetic mixing, i.e., the absence of

a cross term,

− sinχ

2
F ′
µνF

µν
Y , (1.2)

between the gauge kinetic terms for the U(1)′ and the U(1)Y gauge bosons [31]–

[34]. This is motivated by the orthogonality of all U(1) subgroups within a

simple GUT group like E6. A usually very small kinetic term arises at the two-

loop level from the renormalization group evolution of the gauge couplings [35].

An exception in the case in which incomplete GUT multiplets survive below

the unification scale and in which a relatively large kinetic mixing term can be

generated [36]. In any case, there is no general reason to ignore kinetic mixing

and we now address it in a different but equivalent formalism: one can always

redefine the gauge boson fields to remove any term of the form (1.2). The

effects due to sin χ 6= 0 then manifest themselves in the U(1)′ charges which

will in general have a non-trivial hypercharge component. In the E6 context, for

example, one can write the Z ′ as the general (family-universal) combination [10],

Z ′ = cos α cos βZχ + sinα cos βZY + sin βZψ. (1.3)

The restriction to β = 0◦ corresponds to general SO(10) based models. Speci-

fying further to α = arctan
√

3/2 ≈ 50.8◦ =⇒ Z ′ =
√

2/5 Zχ +
√

3/5 ZY ≡ ZR,

which couples to charges proportional to the diagonal (third) component of

right-handed isospin, SU(2)R. We are unaware of this case having been intro-

duced in the literature. But as we will discuss in section 4, the resulting Z ′ gives

a reasonably good fit, and technically even a finite 90% C.L. upper limit can be

set on its mass.

ZLR: models with left-right symmetry (reviewed in ref. [37]) are based on the gauge

group SU(3)C × SU(2)L × SU(2)R × U(1)B−L ⊂ SO(10) and contain a boson,

ZLR ≡
√

3/5 (ᾱ ZR − ZB−L/2ᾱ). Here B and L coincide, respectively, with

baryon and lepton number for the ordinary fermions, and Z ′ =
√

3/5 Zχ −
√

2/5 ZY ≡ −
√

3/8 ZB−L is obtained by choosing α = − arctan
√

2/3 ≈ −39.2◦

(B or L individually cannot be parametrized in this way). The parameter ᾱ =
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√

g2
R/g2

L cot2 θW − 1, with θW the weak mixing angle, gives the coupling strength

in terms of the SU(2)L,R gauge couplings, gL,R. Manifest left-right symmetry

(which we will assume) requires gL = gR, while the very strong coupling limit

(ᾱ, gR/gL → ∞) implies ZLR → ZR.

Z6L: a leptophobic Z ′ has vanishing U(1)′ charges to charged leptons and left-handed

neutrinos. One version of this idea [36] is a variation of the Zη model with

kinetic mixing added. The choice (α, β) = (arctan
√

8/27,− arctan
√

9/7) ≈
(28.6◦,−48.6◦) =⇒ Z ′ =

√

27/80 Zχ + 1/
√

10 ZY − 3/4Zψ ≡ Z6L. The effects of

a leptophobic Z ′ are very difficult to observe but it can be searched for in the

dijet [38] and tt̄ [39] channels at hadron colliders. Moreover, mixing effects at

LEP 1 strongly constrain θZZ′ even in this case.

Sequential Z
′: the ZSM boson is defined to have the same couplings to fermions as the

SM Z. Such a boson is not expected in the context of gauge theories unless it has

different couplings to exotic fermions than the ordinary Z. However, it serves as a

useful reference case when comparing constraints from various sources. It could also

play the role of an excited state of the ordinary Z in models of compositeness or with

extra dimensions at the weak scale.

A superstring Z
′: there is a family non-universal Zstring boson appearing in a specific

model [40] based on the free fermionic string construction with real fermions. This

model has been investigated in considerable detail [41, 42] with the goal of under-

standing some of the characteristics of (weakly coupled) string theories, and of con-

trasting them with the more conventional ideas such as GUTs. While this specific

model itself is not realistic (for example, it fails to produce an acceptable fermion

mass spectrum) the predicted Zstring it contains is itself not ruled out (ignoring is-

sues related to CP violation and FCNCs [14]). Its coupling strength is predicted

and so are its fermion couplings. Such a Zstring can be naturally at the electroweak

scale [43, 44].

2 Extended Higgs sectors and exotics

The incorporation of (one or more) extra gauge group(s) in the models listed above generally

warrants an extended fermionic sector for two main reasons: (i) cancellation of gauge

and mixed gauge-gravitational anomalies to assure quantum consistency of the theory,

and (ii) in the context of low-energy supersymmetry, the unification of gauge couplings

at high energies. Provided that all fermions belong to complete E6 representations the

anomalies are cancelled automatically. In a bottom-up approach, however, the condition

of anomaly cancellation restricts the U(1)′ charge assignments of the SM fermions and the

exotics [12, 45].

The structure of the Higgs sector of the underlying model is important as it may affect

the ρ0 parameter,

ρ0 ≡
∑

i(t
2
i − t23i + ti)|〈φi〉|2
∑

i 2t
2
3i|〈φi〉|2

, (2.1)
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Z ′ C range restricted range
(

ω = 0, τ ≥ 1
2

)

Zχ
2√
10

(

1 − 5
2ω

)

2√
10

[

−3
2 ,+1

]

2√
10

Zψ

√

2
3

(

1 − 2 τ − 3
2ω

)

√

2
3 [−1,+1]

√

2
3 [−1, 0]

Zη − 1√
15

(1 − 5 τ) 1√
15

[−1,+4] 1√
15

[

3
2 ,+4

]

ZI τ + 2 ω − 1 [−1, 1]
[

−1
2 , 0

]

ZS
7√
60

(

1 − 5
7τ − 15

7 ω
)

7√
60

[

−8
7 ,+1

]

1√
15

[

+1,+9
4

]

ZN
3√
10

(

1 − 5
3(τ + ω)

)

3√
10

[

−2
3 ,+1

]

1√
10

[

−2,+1
2

]

ZR 1 − ω [0,+1] 1

ZLR

√

3
5 ᾱ

[

1 −
(

1 + 1

ᾱ2

)

ω
]

√

3
5

[

− 1
ᾱ
,+ᾱ

]

√

3
5 ᾱ

Z6L

√

3
2τ

√

3
2 [0,+1]

√

3
2

[

1
2 ,+1

]

Table 1. Special Higgs sectors for E6 based models. The third column shows the most general

range for C if all three Higgs doublets in a 27 representation participate in spontaneous symmetry

breaking. The last column corresponds to the restricted range appropriate for supersymmetry

inspired models.

where ti (t3i) is (the third component of) the weak isospin of the Higgs field φi, and which

enters the neutral and charged (MW ) gauge boson mass interdependence,

M0 =
MW√

ρ0 cos θW
. (2.2)

ρ0 = 1 corresponds to a Higgs sector with only SU(2) doublets and singlets. In that case

the mass parameter M0 (the ordinary Z mass in the absence of Z−Z ′ mixing) is predicted.

In general there is mixing between the mass eigenstates of the Z ′ and the Z given by [46],

tan2 θZZ′ =
M2

0 − M2
Z

M2
Z′ − M2

0

. (2.3)

Allowing ρ0 as an additional fit parameter means that the Higgs sector of the model

is arbitrary and may include higher-dimensional Higgs representations. In addition, the

presence of non-degenerate multiplets of heavy fermions or scalars will affect the W and

Z self energies at the loop level, and therefore contribute to the T parameter [47]. With

the current data set, the phenomenological consequences of ρ0 and T are indistinguishable

and values quoted for ρ0 really apply to the combination ρ0/(1 − αT ).

If the U(1)′ charge assignments of the Higgs fields, Q′
i, are known in a specific model,

then there exists an additional constraint [48],

θZZ′ = C
g2

g1

M2
Z

M2
Z′

, (2.4)
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where g1 = gL/ cos θW and where g2 =
√

5/3 g1 sin θW
√

λ is the U(1)′ gauge coupling. The

latter is given in terms of λ which is of order unity (we will set λ = 1 as is conventionally

done), and in fact λ ∼ 1 in GUT models breaking directly to SU(3)C × SU(2)L ×U(1)Y ×
U(1)′. C is a function of vacuum expectation values (VEVs) of the Higgs fields and the Q′

i,

C = −
∑

i t3iQ
′
i|〈φi〉|2

∑

i t
2
3i|〈φi〉|2

. (2.5)

As an illustration, for the E6 based models one may restrict oneself to the case where the

Higgs fields arise from a 27 representation. The U(1)′ quantum numbers are then predicted

and eq. (2.5) receives contributions from the VEVs of three Higgs doublets, x ≡ 〈φν〉,
v ≡ 〈φN 〉 and v̄ ≡ 〈φN̄ 〉, respectively, in correspondence with the standard lepton doublet,

as well as the two doublets contained in the 5 and 5 of SU(5) ⊂ E6. They satisfy the sum

rule, |v|2 + |v̄|2 + |x|2 = (
√

2 GF )−1 = (246.22 GeV)2, and we introduce the ratios,

τ =
|v̄|2

|v|2 + |v̄|2 + |x|2 (0 ≤ τ ≤ 1), (2.6)

ω =
|x|2

|v|2 + |v̄|2 + |x|2 (0 ≤ ω ≤ 1). (2.7)

In supersymmetric models one usually assumes x = ω = 0 to avoid spontaneous breaking of

lepton number and problems with charged current universality, as well as v̄ ≥ v (implying

τ ≥ 1/2) to avoid non-perturbative values for the top quark Yukawa coupling. The resulting

ranges for C are shown in table 1.

3 Details of the analyses

The theoretical evaluation uses the special purpose FORTRAN package GAPP [49] ded-

icated to the Global Analysis of Particle Properties. All experimental and theoretical

uncertainties are included and their correlations accounted for. All errors have been added

in quadrature and in most (but not all) cases been treated as Gaussian. The effects of the

Z ′ bosons are taken into account as first order perturbations to the SM expressions.

The most stringent indirect constraints on MZ′ come from low-energy weak neutral

current experiments displayed in table 2 together with other non Z-pole observables. The

first set shown are the most recent combinations of MW [50] and the top quark mass,

mt [51].

The second set are effective four-Fermi operator coefficients (g2
L,R) and cross section

ratios (κ,Rν , Rν̄) from neutrino and anti-neutrino deep inelastic scattering (ν-DIS) at

FNAL [52, 53] and CERN [54, 55]. The NuTeV [53] results are very preliminary. We

have updated ref. [53] to account for the recently measured strange quark asymmetry [56].

The incorporation of other effects like more recent QED radiative corrections [57, 58] and

parton distribution functions [59] (allowing some level of charge symmetry violation) are

likely to decrease the 2σ deviation in g2
L shown in the table. On the other hand, the world

average [60] of the Ke3 branching fraction has been corrected upwards several times in

the previous years, making for a larger correction for the νe (ν̄e) contamination of the

– 6 –
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Quantity Group(s) Value Standard Model pull

mt [GeV] Tevatron 173.1 ± 1.4 173.1 ± 1.4 0.0

MW [GeV] Tevatron 80.432 ± 0.039 80.380 ± 0.015 1.3

MW [GeV] LEP 2 80.376 ± 0.033 −0.1

g2
L NuTeV 0.3010 ± 0.0015 0.3039 ± 0.0002 −2.0

g2
R NuTeV 0.0308 ± 0.0011 0.0300 0.7

κ CCFR 0.5820 ± 0.0041 0.5831 ± 0.0003 −0.3

Rν CDHS 0.3096 ± 0.0043 0.3091 ± 0.0002 0.1

Rν CHARM 0.3021 ± 0.0041 −1.7

Rν̄ CDHS 0.384 ± 0.018 0.3861 ± 0.0001 −0.1

Rν̄ CHARM 0.403 ± 0.016 1.1

Rν̄ CDHS 1979 0.365 ± 0.016 0.3815 ± 0.0001 −1.0

gνeV CHARM II + older −0.040 ± 0.015 −0.0397 ± 0.0003 0.0

gνeA CHARM II + older −0.507 ± 0.014 −0.5064 ± 0.0001 0.0

QW (Tl) Oxford + Seattle −116.4 ± 3.6 −116.8 0.1

QW (Cs) Boulder −73.16 ± 0.35 −73.16 ± 0.03 0.0

QW (e) SLAC E158 −0.0403 ± 0.0053 −0.0472 ± 0.0005 1.3

cos γ C1d − sin γ C1u Young et al. 0.342 ± 0.063 0.3885 ± 0.0002 −0.7

sin γ C1d + cos γ C1u Young et al. −0.0285 ± 0.0043 −0.0335 ± 0.0001 1.2

CKM unitarity KLOE dominated 1.0000 ± 0.0006 1 0.0

(gµ − 2 − α/π)/2 BNL E821 4511.07 ± 0.74 4509.04 ± 0.09 2.7

Table 2. Non Z-pole precision observables from FNAL, CERN, SLAC, JLab, and elsewhere.

Shown are the experimental results, the SM predictions, and the pulls.The SM errors are from the

parametric uncertainties in the Higgs boson and quark masses and in the strong and electromagnetic

coupling constants evaluated at MZ .

dominantly νµ (ν̄µ) beams, and which by itself would be indicative of an increase in the

deviation. More precise statements about the size and the sign of the net effect of these

corrections will only be possible after the completion of the re-analysis of the NuTeV re-

sult, which is currently in progress [61]. The gνeV,A in the third set are effective four-Fermi

couplings for elastic ν-e scattering [62].

QW denote so-called weak charges measured in atomic parity violation [63]–[65] and

polarized Møller scattering [66]. The extracted value for QW (Cs) has shifted very recently

from a 1σ deviation to perfect agreement with the SM. This is due to the state of the art

atomic structure calculation of ref. [67] which also brought the atomic theory uncertainty

below the measurement error. This is of significant importance for Z ′ studies, since they

easily affect and conversely are strongly constrained by precision weak charges. A previous

2σ deviation in QW (Cs) based on the same measurement [65] but a different evaluation

of the atomic physics [68] even indicated the presence of a Z ′ [10]. Related to nuclear

weak charges are the two linear combinations of four-Fermi couplings C1u and C1d (with

tan γ ≈ 0.445 [69]) which are the result of a global analysis of parity violating electron

scattering experiments on nuclear fixed targets [70].

– 7 –
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Quantity Group(s) Value Standard Model pull

MZ [GeV] LEP 1 91.1876 ± 0.0021 91.1874 ± 0.0021 0.1

ΓZ [GeV] LEP 1 2.4952 ± 0.0023 2.4954 ± 0.0010 −0.1

σhad [nb] LEP 1 41.541 ± 0.058 41.483 ± 0.008 1.6

Re LEP 1 20.804 ± 0.050 20.736 ± 0.010 1.4

Rµ LEP 1 20.785 ± 0.033 20.736 ± 0.010 1.5

Rτ LEP 1 20.764 ± 0.045 20.782 ± 0.010 −0.4

AFB(e) LEP 1 0.0145 ± 0.0025 0.0163 ± 0.0002 −0.7

AFB(µ) LEP 1 0.0169 ± 0.0013 0.5

AFB(τ) LEP 1 0.0188 ± 0.0017 1.5

Rb LEP 1 + SLD 0.21629 ± 0.00066 0.21578 ± 0.00005 0.8

Rc LEP 1 + SLD 0.1721 ± 0.0030 0.17224 ± 0.00003 0.0

Rs,d/R(d+u+s) OPAL 0.371 ± 0.022 0.3592 0.5

AFB(b) LEP 1 0.0992 ± 0.0016 0.1033 ± 0.0007 −2.5

AFB(c) LEP 1 0.0707 ± 0.0035 0.0738 ± 0.0006 −0.9

AFB(s) DELPHI + OPAL 0.098 ± 0.011 0.1034 ± 0.0001 −0.5

Ab SLD 0.923 ± 0.020 0.9347 ± 0.0001 −0.6

Ac SLD 0.670 ± 0.027 0.6679 ± 0.0004 0.1

As SLD 0.895 ± 0.091 0.9357 ± 0.0001 −0.4

QFB LEP 1 0.0403 ± 0.0026 0.0423 ± 0.0003 −0.8

ALR (hadrons) SLD 0.1514 ± 0.0022 0.1473 ± 0.0010 1.9

ALR (leptons) SLD 0.1544 ± 0.0060 1.2

Aµ SLD 0.142 ± 0.015 −0.4

Aτ SLD 0.136 ± 0.015 −0.8

Ae(QLR) SLD 0.162 ± 0.043 0.3

Aτ (Pτ ) LEP 1 0.1439 ± 0.0043 −0.8

Ae(Pτ ) LEP 1 0.1498 ± 0.0049 0.5

sin2 θeff
W (e) Tevatron 0.2316 ± 0.0018 0.2315 ± 0.0001 0.1

Table 3. Z-pole precision observables from LEP 1, the SLC, and the Tevatron. The SM errors are

parametric as in table 2.

Finally, the constraints in the last two lines from first row CKM matrix unitarity [60,

71, 72] and from the anomalous magnetic moment of the muon [73] are affected by Z ′ bosons

at the one-loop level. These loop diagrams are finite and give rise to rather small but not

necessarily negligible effects. For example, a W −Z ′ box contribution could violate quark-

lepton universality in the charged-current sector (and therefore apparently violate CKM

unitarity) and is logarithmically enhanced for large MZ′ [74]. We included the analogous

effect in the parameter ∆r [75] describing the relation between the Fermi constant and

MW .

The size of the mixing angle θZZ′ is strongly constrained by the very high precision

Z-pole experiments [76] at LEP and SLC shown in table 3. The first set of measurements

is from the Z line shape, from the (inverse) leptonic branching ratios normalized to the

total hadronic Z decay width and from leptonic forward-backward asymmetries, AFB(ℓ).
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Z ′ MZ′ [GeV] sin θZZ′ χ2
min

EW (this work) CDF DØ LEP 2 sin θZZ′ sin θmin
ZZ′ sin θmax

ZZ′

Zχ 1,141 892 640 673 −0.0004 −0.0016 0.0006 47.3

Zψ 147 878 650 481 −0.0005 −0.0018 0.0009 46.5

Zη 427 982 680 434 −0.0015 −0.0047 0.0021 47.7

ZI 1,204 789 575 0.0003 −0.0005 0.0012 47.4

ZS 1,257 821 −0.0003 −0.0013 0.0005 47.3

ZN 623 861 −0.0004 −0.0015 0.0007 47.4

ZR 442 −0.0003 −0.0015 0.0009 46.1

ZLR 998 630 804 −0.0004 −0.0013 0.0006 47.3

Z6L (803) (740) −0.0015 −0.0094 0.0081 47.7

ZSM 1,403 1,030 780 1,787 −0.0008 −0.0026 0.0006 47.2

Zstring 1,362 0.0002 −0.0005 0.0009 47.7

SM ∞ 0 48.5

Table 4. 95% C.L. lower mass limits on extra Z ′ bosons for various models from EW precision data

and constraints on sin θZZ′ assuming ρ0 = 1 (fixed). For comparison, we show (where applicable)

in the third, fourth and fifth column the limits obtained by CDF, DØ and LEP 2. In the following

columns we give, respectively, the central value and the 95% C.L. lower and upper limits for sin θZZ′ .

Also indicated is the χ2 minimum for each model. The last row is included for comparison with

the standard case of only one Z boson.

The second set represents similarly defined quantities of the quark sector. While all AFB

are practically sensitive only to the effective weak mixing angle defined for the initial

state, sin2 θeff
W (e), the quantities Aq are functions of the effective weak mixing angle of the

respective quark flavor, q (QFB is a similar observable for light quarks). The third set is a

variety of cross section asymmetries sensitive to sin2 θeff
W (e), sin2 θeff

W (µ), or sin2 θeff
W (τ). For

details, see references [60, 76, 77]. The most recent result is the determination of sin2 θeff
W (e)

by the CDF [78] and DØ [79] Collaborations and is obtained from the forward-backward

asymmetry for e+e− final states. Many of the entries in table 3 are of much higher precision

than typical low-energy observables. The Z ′ amplitude, however, is almost entirely out of

phase with and therefore negligible compared to the resonating Z amplitude. The Z ′ enters

here mainly through a modification of the couplings of the ordinary Z to fermions, as well

as through eq. (2.2), and indirectly by affecting the extracted value of the QCD coupling.

4 Results and discussion

In table 4 we present our limits on the Z ′ parameters for the models introduced in section 1.

In this table we specify our results for the case ρ0 = 1 fixed but make no further assump-

tions regarding the Higgs sector except that the Higgs boson mass, MH , is restricted to

114.4 GeV ≤ MH ≤ 1TeV, where the upper end is from requiring perturbativity. The lower

limit is the SM bound from LEP 2 [80] although we recall that this does not necessarily

apply in the presence of new physics. Also shown in table 4 are the current limits on various
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Z ′ MZ′ [GeV] sin θZZ′ sin θmin
ZZ′ sin θmax

ZZ′ ρ0 ρmin
0 ρmax

0 χ2
min

Zψ 147 −0.0004 −0.0018 0.0010 1.0002 0.9996 1.0035 46.1

ZR 439 −0.0003 −0.0015 0.0012 1.0003 0.9996 1.0035 45.3

SM ∞ 0 1.0003 0.9996 1.0035 47.9

Table 5. 95% C.L. limits on M ′

Z
, sin θZZ′ and ρ0 when the latter is allowed to float freely.

Z ′ boson masses from the Tevatron and LEP 2. The CDF limits [81] are from a search for

a dimuon invariant mass peak. Notice that the ZI and Z6L bosons face the weakest limits

as is expected from their hadrophobic and leptophobic characters, respectively (no limit

on the ZLR is available from Run II at the Tevatron; the entry shown in the table is the

CDF Run I result [82] from the combined dimuon and dielectron channels). Not shown are

the dielectron channel search limits from CDF Run II [83] which are similar but slightly

lower. There is a significant excess at a dielectron invariant mass of 240 GeV, but this is

not confirmed in the µ+µ− channel. The results from DØ [84] are based on the dielectron

final state. The mass limits at the Tevatron assume that no decay channels into exotic

fermions or superpartners are open to the Z ′; otherwise the limits would be moderately

weaker. LEP 2 constrains virtual Z ′ bosons by their effects on cross sections and angular

distributions of dileptons, hadrons, bb̄ and cc̄ final states [85]. The table shows that the

mass limits from the EW precision data are generally competitive with and in many cases

stronger than those from colliders. We stress that these classes of limits are highly comple-

mentary. The result for the leptophobic Z6L (in parentheses) in the EW column is for the

special Higgs sector with τ = 1/2, i.e., for the lower end of the restricted range in table 1.

For the upper end (τ = 1) we find a limit of 1.32 TeV. The CDF number [38] refers to the

ZSM limit from the dijet channel and should give a rough estimate of the sensitivity to our

specific Z6L.

In the most general situation ρ0 is allowed to differ from 1 and is treated as a free

fit parameter. We give the results of this case for the Zψ and the ZR models in table 5.

The comparison with table 4 shows that the presence of the extra fit parameter has little

impact on the extracted Z ′ constraints.

Note, that all weak charges and the C1q are proportional to some vector coupling, v,

and hence blind to the Zψ which has only axial-vector couplings, a, to ordinary fermions.

This is why the EW data give very weak constraints on its mass. The loop effects on the

last two observables in table 2 gain therefore relative importance. In fact, Z ′ effects on

gµ − 2 are proportional to v2
µ − 5 a2

µ so that there is an additional enhancement (of an

otherwise very small effect).

Figures 1, 2 and 3 show 90% C.L. exclusion contours for all models except for the

Z6L (since its mass is in general unbounded). The solid (black) lines specify use of the

constraint ρ0 = 1 while the dashed (blue) lines are for ρ0 free. We also show the extra

constraints for the specific Higgs sectors described in section 2. These are represented by

the dotted (red) lines unless they belong to the restricted range in table 1 in which case they

are long-dashed (green). The numbers in the plots refer to the values of τ or ω, whichever

carries the larger coefficient in table 1. The best fit locations (for ρ0 = 1) are indicated by

– 10 –
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Figure 1. 95% C.L. contours in MZ′ vs. sin θZZ′ for various models. See the text for details.

an "x". The lower limits from CDF (dot-dashed and black), DØ (double-dot-dashed and

magenta) and LEP 2 (dot-double-dashed and orange) given in table 4 are also shown.

In all figures and in tables 4 and 5 we used the MH window mentioned above. However,

the SM best fit value, MH = 96+29
−24 GeV, is below this range. It is interesting to note [10, 86]
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Figure 2. 95% C.L. contours in MZ′ vs. sin θZZ′ for various models. See the text for details.

that the presence of a Z ′ often moves the central value up to the allowed region. Table 6

shows the best fit values and 1σ errors for MH when the LEP 2 bound is removed.

Some Z ′ models have a fairly low minimum χ2, especially the Zψ and the ZR. Table 6

shows the χ2 minimum of the ZR model about 3 units below the SM value, technically
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Figure 3. 95% C.L. contours in MZ′ vs. sin θZZ′ for the sequential Z ′ boson and the Zstring model.

See the text for details.

Z ′ Zχ Zψ Zη ZI ZS ZN

MH [GeV] 171+493
− 89 97+31

−25 423+577
−350 141+304

− 61 149+353
− 68 117+222

− 40

χ2
min 47.3 46.1 47.7 47.4 47.3 47.4

Z ′ ZR ZLR Z6L ZSM Zstring SM

MH [GeV] 84+31
−24 110+174

− 35 126+276
− 52 331+669

−246 134+299
− 58 96+29

−25

χ2
min 45.1 47.3 47.7 47.2 47.7 48.0

Table 6. 1σ ranges of MH allowed by each model and the best fit χ2 values.

implying an upper bound on the ZR mass of about 29 TeV at the 90% C.L. This is actually

the reason why we included the ZR in this paper in the first place. Of course, at present

there is little significance to this observation since we have two additional fit parameters

(M ′
Z and sin θZZ′) and various parameters for the charges (like the angles α and β) to

adjust. Nevertheless, this is somewhat surprising given that the SM fit is quite good

with χ2
min = 48.0 for 45 effective degrees of freedom. It may be useful to note that the

improvement in χ2 arises mainly through σhad, QW (e), and the e−-DIS observables, where

the latter two are of special interest in view of proposed and approved experiments to be

performed at JLab.
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